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The method of force sources is proposed for solving llnear problems related
to the interaction between rigid bodies, and fluids, or gases., Method is
based on the introduction of perturbation force sources into equation of
motion of fluid media. Boundary conditions at the rigid body surface make
it possible to reduce the problem of hydrodynamic reactions to an integral
equation defining the function of force sources. Method 1s 1llustrated by
the solution of three simple problems in the field of acoustics, and of vis-
cous, and compressible media flow around bodies.

In the linearized theory of flow around rigid bodies, as well as in acous-
tics, an important part of the sound wave generation analysis concerns the
determination of hydrodynamic reactions of the medlum on moving, pulsating,
or osclllating bodies. Such reactions make themselves felt as constant, or
variable mechanical forces, such as drag and 1ift, or in the case of sound
wave emlitters, as the wave resistance. Varilous methods had been proposed
for the computation of such forces, as for example, in the monographs [1 to

Here, a different approach to the problem of determination of surface
forces exerted by liquids and gases on the rigid body is proposed. By resor-
ting to the formalism of the generallized functions it is possible to intro-
duce into the equations of motion of fluid medlia a perturbatlion source 1n
the form volume density of forces exercised by the body on the gas. The dis-
tribution of surface tenslon entering into the expresslon of thils force 1s
selected in such a manner as to satisfy boundary conditions at the body sur-
face., It becomes possible with the use of this device to reduce the problem
of determination of forces acting on the body surface to the solution of
certain integral equations. The proposed method 1s in all respects comple-
tely analogous to the well-known method of sources and sinks [1 to 4]. Both
methods reduce the problem of interaction between body and gas to the solu-
tion of integral equations. The method of sources and sinks, however, leads
to an integral equation which describes the distribution of fictitiolus sour-
ces and sinks in the volume of the body having the density of the medium,
while the method of force sources ylelds an integral equation which directly
dﬁfines the distribution of mechanical forces over the surface of the body

-

We may note that the method of force sources had to a certain extent been

#) It 1s, of course,assumed here that the body does not have any special
ejection devices, and that any strong surface evaporation of the body mate-
rial, such as may occur at hypersonlc velocities, is absent.
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already used in papers [6 and 7] for the determination of sound radiation by
means of polnt-force sources,

1. Basioc equations and perturbation force sources. The system of linear
equations defining small perturbations in a viscous compressible medium can
be presented in the following form [8]:

Pog—=~gradp+nAV—!—(C—{-—;—n)graddivv—i-f(r, t) (1.1

%% -+ 00 divy = Q (r,t), dp = cdp (CS = (Ig?yh) (1 2)

Boundary conditions at the rigid body surface § are
vns = Vycos(n, Vy) for inviscid medium, vyg=V, for viscous medium (1.3)

where po, Po and Vo are respectively the density, pressure and velocity
of the unperturbed medium; p, p and Vv are the respective perturbations
of these parameters, 7 &and ( are viscosity coefficents, o 18 the velo-
city of sound in the medium; d/dt == 8/8t +(Vo,V) 1s the total derivative
with respect to time in a coordinate system moving with velocity V,.

In the following we shall assume ¢ = O , because of the stipulated
absence of any special ejectlon devices and of body matter sutface evapora-
tion.

We denote by P(pr, t) the force acting on a small surface area of the
body. Using the generalized functions formalism (9 and 10], we may then
write the expression of the body force per unit volume ¢ as follows

i="Pbé[p(r, )] | grad | (1.4)

where o(r, t) is the equation of the tody surface which in the general case
may pulsate, or oscillate as, for example, in problems of sound wave emlssion,
8{p] is the Dirac function [9 and 10]}. The resultant P of body forces
acting on a gas is defined by the integral

F— SSS fdzdydz = {{Pas (1.5)
S

As 18 known from the general theory of linear differential equations, the
solution of system (1.1), (1.2) can be presented in the form

vi(r, t) = g.§§ SG,-; (r, 82", Y i (7', t')dr'dt’ (1.6)

where v, and S, are respectively the components of velocity and force;

@,« 1s the Green's tensor operator of the initial system (1.1),(1.2). Nota-
tion (dr’'= dx‘dy’dz’) has been introduced for the sake of convenelence.
Integration with respect to ¢’ may be carried out either over the time
interval from ¢, preceding the time of source action, or ¢. following it.

Substituting (1.4) into Equation (1.6), and postulating the fulfilment
of boundary conditions (1.3) over the body surface, we obtaln the following
integral equation for P(p, t) :
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t
Gik (i‘s, I 1 l’s;, t"’) ka ('S {t) ds’d¥’ (‘ . i)

oo

v; (vse t) = \R
S ¢

The determination of the surface forse P 1s thus reduced to the solu-
tilon of integrel Equations (1.7) with arguments in the form of Creen's ten-
sor function which 1s considered as known.

We note that 11 the derivation of (1.7) no assumptions were made as Lo
the potential character of the intevaction between body and medium, there-
fore, Equation (1.7} makes it possible %o determine the full force acting
on the medlium which, in the general case, consistes of a turbulent and ¢ a
potential part. If, on the other hand, the sources and sinks ¢@{p, 7) ave
left in the continuity Equation (1.2), and the stipulation is made that in
{1.1) #(r, t) = O, then, after appropriate computations, an integral equa-
tion may he derived from function 0(», ¢). It 1s evident that this is, in
fact, made on the assumption of a potential flow. It becomes, therefore,
necesgary when considering, for example, viscous media, to introduce lato
the analysis additional sources of turbulence. The metod of forece ssurces
considered here does not reqQuire such additional devices, making 1t possible
to determine in a natural vay both, the potential and the turbulent parts of
the medium reaction forces. To 1llustrate the method of force sources we

shall consider two simple problems.

The first problem deals with viscous flows. We shall find Lhe perturba-
tions which are created in a viscous incompressible medium by a circular
c¢¥linder of radius ¢ and infinite length along the z-axis of the coordinate
system (r, x, v}, rotating slowly about the axis with an angular velocity
wy . We shall alsc determine the force resisting the cyiinder rotation. The

low parameters are independent of o , and Equation {1.1)} bteaomes
e, ! ziv‘v N to

3

@ e T g

s As the body surface equaticn is of the simple form = & we have from
1.k T
Tar O =

Substituting the expression of ﬂp into {1.%; and integrating with respect
te o &end r , we come to the conclusilon that the unknown constant I 1is
the force acting on & unit of the cylinder length.

In this simple example it 1s possible to dilspense with the preliminary

determination of the Green’'s function. Applylng the Hankel transformation
to Equations {1.8) and {1.9), and using the inversion theorem [11], we obtain

fom=

s

. r falr 1

v (ry= e (L

For the determination of 7 we shall use boundary condition v_(a} = aw,
whlch gives v 141
T = 4nna®, (1.11}

This result is well known in hydrodynamics where it was derived by means
of solving the boundary value problem of Equation (1.8) without its right-
hand side [8].

As the second example, we shall conslder & problem from the domain of
acoustics concerning the reaction force of sonic waves emltted by a plate
vibrating harmonically with frequency w, and ampiitude a 1n the directlon
of the x-axis nerpendicular to the plate. For the displacement of particles
of an inviscid, compresaible medium we have from Equations (1.1) and (1.2)
the following expression:

¢ 1 9% 1 . 5
02% T e B8 T gyt (st (1.12)

The boundary condltion at the plate surface 1is
E|s = a sin wyt (1.13)
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In accordance with (1.4) the expression of f, it
fz (z,t) = P (1) 8 (z — a sin wgyt) (1.14)
where the unknown function F(¢) 1s the pressure on the plate surface.
Green's function for Equation (1.12) 1n the case of a lagging argument 1s of

' ft for x>0

Lrne {orm - ’
o, N . ’ z2—z
T P O

z (s

Here, H(x) ic the Heavicide function [ 10].

Subctituting relaticnships (1.13) to (1.15) into the general formula (1.7),
intesrating with respect to  z', and differentiating the integral equation
with respect Lo ¢, we obtaln

XD
Dol Wye COS Myl == 3 Pit)d [t —_r =% (8in gt — sin wpl") ]dt’ ‘ (1.16;
¢

The solution of this Integral equation is
P (2) = punwye cos @yt (1 — M cos ©yl) (M = awy/ ¢) (147
Here M 1s the Mach number. The appearance of the second harmonlc 1n
the expression of F(t) 1s the result of the Doppler effect of the oscille-
ting plate.
2. Volume foroe source ¢ & simple form in a compressible flew, We shall
consider the problem of perturbations generated in a fluld compressible

wdlum by a volume-source force of the simplest form. We shall specify the
simple force source of perturbations 1n a cylindrical coordinate system 1n

the form of the fcllowing functions
ra |
I(r,z,8)==+—>e, for jz--Vo[<l r<a
2ad o
2.1)
f(roz, ) =0 in the remaining space

where the z-axis coincides with the direction of flow velocity V, and e,

i1s the unit vector in the same direction. The stipulation of form (2.1) for
the force source means that the density of force ¢ 1is throughout zero, with
the exception only of the area bounded by a clrcular cylinder of radius a
and length 2¢ . Within the latter area thre density of force £ 1s directed
along the z-axis and equal to the constant E/enaat . Using relationships
(1.5), we conclude that the constant F 1s simply the drag of the perturb-
ation force source, which will be approximately determined later.

The selection of form (2.1) for the force function was made not =o much
on physical conslderations, as for the sake of comparative simplicity of
further mathematlcal computations. Nevertheless, we may expect to derlve
certalin information about the general character of an axial flow past bodiles
of rotation with dimensions a¢ and 2¢ , by using the results obtained or
function £ of form (2.1). It 1s highly probable that a distribution close
to that of (2.1) would be realized with an axial flow past a three-dimensional
axisymmetric cylindrical lattice body of radius a¢ and length 2¢ , con-
structed from slender bodles of rotation. The lattice pitch must be assumed
to be considerably smaller than 1ts dimensions, and the dimensions of the
lattice forming elements, located at nodal points, to be smaller than the
pitch., 1In this case force F wlll be the resultant of all forces acting
on individual lattice elemenrts. Expression of £ 1in (2.1) may be consildered
as an asymptotic approximation to the actual distribution of the lattice
forces per unlt volume.
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In a coordinate system in which the perturbation source {2.1) is assumed
at rest, while the medlum moves past 1t with velocity YV, in the negative
direction of the z-axls, we can derive from Equations (1.1),{1.2) the follow-
ing relationship (*)

ap 1 ap , o 0°p 9,

ore T TU— M) G =

In order to solve Equation (2.2) with function Jf, defined by (2.1) we
shall resort to a double Fourler-Hankel transformation [11]

(E = I ——Vot, M e VQ/C) (2.2)

+00 00
¥, (k %) = o { ey e gndrag
R~
with inversion formula
+o0 b .
Y(r,t) = S 5 kY, (ky ») e8], (k, r)dk dx
0 —oo

where J} 1s a Bessel function, Y 1s any of the components of perturbation,
or of function [J,.,and iﬁv the transform of function ¥ . Applying this
integral transformation to Equation (2.2) and relationship (2.1), and using
the inversion formula, we finally derive the followlng integral representa=-
tion of pressure perturbations:

00 -0 .
iF in (%) Jo (kr) Ji (ka) e~
p= z:mz S S = (ukz_::gir_ ;4(2)(2: dk dx (2.3)
—00

The value of the double integral of {2.3) depends essentially on the Mach
number. With the use of known methods {12] we obtain for subsonic velocities,
when ¥ < 1

1
Py E) = gmgmr 2 (=" [VEFPFrr+arEG,) —

1t —a?) [K (EF I)? '
— q.) -+ ZAl _— 2.4
vesrrreTe Lt ot —nl @9
Here X, £ and I are complete elliptical integrals of the first, second
and third kind respectively, with modulus ¢, and parameter n defined by
'z 4ar S— .
s 2 [ a ] —_— = Jo— 2
9n T CEF L tar] n rFap (r=V1i—=1) 2.5)
The minus sign of binomial (¢ 7 £) applies to the first term of the sum
in (2.%), and the plus sign to the second one. From (2.4) and (2.5) with
r = a2 we obtain at the surface of the cylinder bounding the source

1
P 8) = 2 O VEF @ LG, — 518711}

_ Zay '
In T E= 1 +iepl *6)

*) An analogous equation without right-hand side, derived for the velocity
potential (the Prandtl-~Glauert equation), was the subjJect of a detalled
analysis in the monograph by Krasil'shchikova {2].
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This pressure distribution is plotted on Fig.l in dimensionless variables
y = 4n?e®y?p/F, x =€/t for ( = 2oy/t = 0.1 .

It will be seen from this graph that for ¥ < 1 there is an area of
increased pressure upstream of the perturbztion source, while at its rear we
have an area of low pressure. In the lower left~-hand corner of Fig.l are
shown experimental data obtained by Wood and Vincent for pressure distribu-
tion in an axial flow over bodies of rotation at subsonic velocities [13],
with the distance on the absclssa axls. The similarity of these curves 1s
easlly seen.

With the use of asymptotic formulas for complete elliptic integrals, with
lel> £ and r=a , we obtain from (2.4) and (2.5) the following expression
for the pressure away from the source

F 4
r = —
PO = 4z et e
It follows from this that the pressure distribution at some distance from
the source 1is of dipolar character.

02y When ¥ = 1 , the integral in Equation (2.3) is
divergent, and the pressure tends to become infinitely
great. The physical meaning of this can be slmply
explained by the beginning of sonic wave emlssion
(see, for example, [16]). In real medla this diver-
gence 1is eliminated by nonlinear effects, and by the
/ \ at effects of viscosity and thermal conductivity. Con-

2.7

sequently, the linearized theory becomes inadequate
in certaln ranges of nearsonic velocitles.

”// For X > 1 the integral in (2.3) becomes again
-1 -2 -3 convergent, but the integrand has

z — poles which are located on the real
ap 4 ! g axis » along which integration

4 takes place. From the linear the-
1 \ / ory of radiation we know that in

this particular case waves are
generated by moving sources [6 and

29 9]. The presence of viscosity has
L// the effect of shifting these poles

of (2.3) into the upper half-plane

07 of complex values of » . The im-
U proper integral of (2.3), as well
a5 )y 02 as the functions by which these
0 2 4 are expressed will be discontinuous
Fig. 1 [12]. The discontinuity lines are

indicated on Fig.2, and bound areas 1 to 6:
l—8=m0—a, I—-t=10+a (M= VM =1
—1l—8=1(r—a), I'— &=y, (r+a) (2.8)
In the space xyg these equalities define conical surfaces.

Computing the integral of (2.3) by the known method [12], we obtaln in
the case of parameter ( = (y,8/f) < 1 the following expressions for pres-
sure perturbations in the above area:

F e 2(r 4 a)2— (I —E)2 -
n=0 p2:—2n?—aln—{2 VT[E(qE)_ L Zc)zr*nz( &) K (q2) J+

Rl (1— g )
fzaV;[KWﬁ—-Eﬁrzzﬁmenﬁh

(2.9)

F
ps= _2n2a21'r1{v(l —EF =1 (r —a) E(gs) —

. T2 (r® — a?)

. (L—ge
VI—eF — 12 (¢ — ap (%0~ e ]}
Ps= p3(r, §) — py (r, —B), Ps=pg(r, ) — py (r, — )
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plo o pretrs D). piom= opa e Dy — padr, — €
P Py () e o 2, N N S O (2.10)

Here, the modull and parameters of the complete ellliptlc integrals are
defined by the following expressilons:

hor
. o ——— e D
e —a) (=1
Expressions for area ©, the trail area, where 7= < a can be derived 1n
a simllar manner. Thus, all perturbations are concentrated wlthin a circular
cone with the apex angle ¢ = 2tg™'(y, )" 1.

Pressure distribution p(g, 2} on the surface of the cylinder containing
sources with { < 1 1s defined by

¥ 3

po=t Py = gt o b eest e By (L) K(']z)l}
2.12)
P 2] (
fs gl 2 ET py==py(E) = pa{—E)
P py () — Py (— &, qp == (1 — &Y/ Jayy

Function y == 2naly,p/F has been plotted on Fig.3 in terms of the dimen-
sionless coordinate x = £/t with parameter { = 0.1 . From Equation (2.9)
we can, on the other hand, establish the asymptotic character of perturba-
tions of pressure P at great distances from the sources, l.e. for |g]l>> g,
and r>>a . Thus, for example, we have in area 5 :

_ I Vot — z 9 13
) 7 8 pslr, &} I Vot — 2y — BT (2,83}
\\:\‘: A diagrammatic representation of
' Pe (8) in spherical coordinates 7 =fsin g,
0 ; £ = pcos 9 with constant # 1s given
N in Fig.2. It 1is interesting to note
1 3 e that the asymptotic formulas (2.7} and
4 e (2.13) coincide with expressions
N obtained earlier L6] for pressure per-
N turbations created by & point-force
&Z)A.’ B ——{ & source.
* 74 o X8 The magnitude of force F remained
< 7 so far undefined. We shall now derive
/ (35400 % an approximate expression of this force
4 o 4 in terms of the source characteristic
dimensions a¢ and 2¢ , and of the
Z S XX a Mach number. As the perturbation
- />/ % source is given in volume, and not at
////// e the surface, it 1s necessary for the

a &8 determination of F to substltute for

the surface boundary conditions a sult-
Fig. 2 able condition as to the character of

perturbations in the volume of the

source action. It is evident that the
medium is being slowed down in the area of the force source action. This is
confirmed by experiments which show that downstream of the body rear face an
area 1s formed where the gas is stationary, the area of stream stagnation
[13 and 16]. In order to utilize thls effect for the approximate determlna-
tion of force F , we shall proceed from the equation for the z-components
of veloeity w(g, r)
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dw ap
— Povo'g“g' =— 7+ 1, (2.14)

We shall consider veloclty perturbations at the flow axis, 1.e. at 7 =0,
We integrate Equation (2.14) with respect to € within the limits of the
area occupled by the source, and using (2.3) obtain

+co
—poVolw (L, 0) —w(—1,0)) = L 2 {0 sin®(x) Ji (ka) '
Wole (1,0) ~w (=400 =L 20 (( s A @)
4]

We assume that the velocity drop due to the slowing down of the flow is
Vo :

w (I, 0) —w (— 1, 0) = — V, (2.16)
With this we obtain from (2.15) the approximate expression of force F
+00
. 2a 00 / sin®(ul) Jy(ke) \ -1
F = na? V-ﬁ—__ st (k) Jalke) N gy g :
“ho%o L sl SS NE+F 1 — M) % (217}

0

We introduce the coefficlent of aerodynamic drag ¢ , and tne relative
thickness of the source g
F a

e — [——g— 2
1/, na®pgVe? =5 (2.18)
We compute the integral in Expression (2.17), and using notations of
{2.18), obtain 2
C: . for M<1
1—(1+aV1I—M— Vit — MY/ (1— M?)
2
C = e for o Y M2— 1.1
14+ — VI—2 (M2 — 1))/ (M*—1) (2.19)
2 -
——— e VazE—1>1
C =15 170r—1) . o e

Values of coefflcient (¢ cemputed for several values of ¥ and three
values of g are tabulated below

M=01 0.3 0.5 0.7 1.2 1.6 1.8

C=2.103 2.108 2.120 2.147 2.000 2.000 2.000 (0 == 0.1}
C=2.701 2.741 2.866 3.202 1.913 41.911 1.000 (o = 0.3)
C =3.248 3.364 3.689 4.749 1.772 1.75% 1.740 {0t == 0.5)

The drag coefflcient (¢ rapldly Iincreases with increasing veloclty, as
long as M < 1 , and slowly decreases with ¥ > 1 . This effect is called
"the wave drag crisis”. It is notable that the greater the value of para-
meter g , the earlier this effect becomes apparent. All this coincides
qualitatively with experimental data on the dependence of coefficient ¢
on M and a in axial flow past bodies of rotation [1%].

The following interpretation of the
4 dependence of the drag coefficient on
7 Y I the Mach number may be proposed. It is
\ ! easlly ascertalned that the force source
22 I defined by (2.1) consists of turbulent
\\\\ g ! } and potential parts. It follows from
| Equation (1.1) that in the absence of
; viscosity effects, and with J, speci-
z (18 7 ~08 -1 fied by {2.1), the velocity vortex in
the volume of the source and in 1its
2 trail of radius @ 1is not zero., It 1is
/ clear from this that at slow subsonic
velocities of the source, 1ts drag 1is
04 \/ conditioned by the turbulence in its
Fig. 3 trall. 1In the subsonic veloclty range
’ of compressible flulds the effective
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drag due to turbulence appears to increase with 1lncreasing velocity in
accordance with (2.19). With supersonic velocities the drag coefficlent
decreases, due to the emission of conlcal Mach waves which diminlshes the
turbulence drag.

We shall compute the emission Intensity of sound waves generated by the
force source when ¥ > 1 , by resorting to the method used in [6] for the
case of a point source. Some simple calculations yleld

0 (2.20)

dE F2 sin? %! ;o ——
dE J ME1) dwn
d - rpea Vg (ME—1) S - Jilax 14 ) (£ 1sert)2f'g;rglission

0

The integrand of (2.20) is in essence the spectral density of sound emis-
sion iIntensity expanded into a Fourler series with respect to wave numbers.
The frequency spectrum of emission 1s obtained from (2.20) by the simple
transformation w = xl/y , where w 1s the frequency of the emitted sonic
wave, For £ - O and a - 0 a divergent integral 1is obtalned 1n the case
of a poilnt source fb]. The convergence of thls integral in the case of an
extended source is conditioned by the interference of emltted waves (see,
for example, [17];. Unfortunately, i1t had not been possible to express the
integral of (2.20) by any known function.

To evaluate the limit of applicabllity of the linear approximation we
shall assume 1n our case that the area of the source action is falrly elon-
gated, 1.e. a < 1 . As a rough measure of applicability of the linear appro-
ximation we shall use the following conditlon:

Pmax = [P (=1, 0) | < po (2.21)

where P, is the pressure in the undisturbed flow. Computing p(— £, 0)
with the aid of Formula (2.3) and substituting this into (2.21), we obtain

MM, = VI—a® o M1, M2 <t for M>1 (2.22)

These two criteria are known from the llnearized theory of flow past
bodies [13]. Thus the linear approximation can only reveal the tendency of
the drag coefficient to grow with N approaching the critical value ¥, .
In the domain of MNg< ¥ < 1 the linearized theory becomes lnadequate, and
i1t 1s necessary to take into account nonlinear effects, and the transport
effects of viscosity and thermal conductivity.

It 1s Hoped that the method of force sources proposed here may be found
useful for the derivation of both rigorous and approximate solutions of
problems concerning the interaction between rigld bodies and fluid media.
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