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The method of force sources is proposed for solving linear problems related 
to the Interaction between rigid bodies, and fluids, or gases. Method Is 
based on the introduction of perturbation force sources into equation of 
motion of fluid media. Boundary conditions at the rigid body surface make 
It possible to reduce the problem of hydrodynamic reactions to an integral 
equation defining the function of force sources. Method Is Illustrated by 
the solution of three simple problems In the field of acoustics, and of vls- 
cous, and compressible media flow around bodies. 

In the linearized theory of flow around rigid bodies, as well as in acous- 
tics, an Important part of the sound wave generation analysis concerns the 
determination of hydrodynamic reactions of the medium on moving, pulsating, 
or oscillating bodies. Such reactions make themselves felt as constant, or 
variable mechanical forces, such as drag and lift, or In the case of sound 
wave emitters, as the wave resistance. Vaslous methods had been proposed 
for the computation of such forces, as for example, ln the monographs [l to 
61. 

Here, a different approach to the problem of determination of surface 
forces exerted by liquids and gases on the rigid body Is proposed. By resor- 
ting to the formalism of the generalized functions It Is possible to lntro- 
duce Into the equations of motion of fluid media a perturbation source In 
the form volume density of forces exercised by the body on the gas. The dls- 
trlbutlon of surface tension entering into the expression of this force Is 
selected In such a manner as to satisfy boundary conditions at the body sur- 
face. It becomes possible with the use of this device to reduce the problem 
of determination of forces acting on the body surface to the solution of 
ce-taln Integral equations. The proposed method Is In all respects comple- 
tely analogous to the well-known method of sources and sinks [l to 41. Both 
methods reduce the problem of Interaction between body and gas to the solu- 
tion of Integral equations. The method of sources and sinks, however, leads 
to an Integral equation which describes the distribution of flctltlohs sour- 
ces and sinks In the volume of the body having the density of the medium, 
while the method of force sources yields an Integral equation which directly 
defines the distribution of mechanical forces over the surface of the body 
("). 

We may note that the method of force sources had to a certain extent been 

‘1 It Is, of course,assumed here that the body does not have any special 
ejection devices, and that any strong surface evaporation of the body mate- 
rial, such as may occur at hypersonic velocities, Is absent. 
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already used in papers E6 andT]for the determination of sound radiation by 
means of point-force sources. 

1. Llrrria l quationr ULd *rturh&tlon for00 Iouro*I. The system of linear 

equations deflnlng small perturbations in a viscous compressible medium can 

be presented In the following form [8]: 

Po$=-gradp+9Av+(6+g’l)g’addivv+f(r,t) (4.1) 

-f$ + p,, divv = Q (T, t), dp = c*=iip (C8 = (~~) (1.3) 

Boundary conditions at the rigid body surface S are 

usg=VcCOS(n, V,) for lnvlscld medium, vg = V, for viscous medium (1.3) 

where co, p. and i/o are respectively the density, pressure and velocity 

of the unperturbed medium; p, p and v are the respective perturbations 

of these parameters, rl and 6 are viscosity coefflcents, c l.8 the velo- 

city of sound In the medium; d / & =: a/&'+(V,V) is the total derivative 

with respect to time In a coordinate system moving with velocity vc. 

In the following we shall assume 0 = 0 , because of the stipulated 

absence of any special ejection devices and of body matter sutface evapora- 

tion. 

We denote by P(r, t) the force acting on a small surface area of the 

body. Using the generalized functions formalism (9 and lo], we may then 

write the expression of the body force per unit volume t 88 fOllOW8 

f=~8I~(~,t)I~grad~~ (1.4). 

where cp(r, t) is the equation of the body surface which in the general case 

may pulsate, or oscillate as, for example, in problems of sound wave emission, 

6191 Is the Dlrac function [9 and lo]. The resultant I of body forces 

acting on a gas is defined by the Lntegral 

F= sss fdzdydz = - 
\\ 

Pds 
‘s 

(f-5) 

As Is known from the general theory of linear differential equations, the 

solution of system (l.l), (1.2) can be presented In the form 

-I-~ 

Ui(r, t) = 5 ~SS s Gir (r, t 1 I’, t’) fg (T’, t’) dr’dt’ 
do 

where v1 and fk are respectively the components of velocity and force; 

0 Lc Is the Green's tensor operator of the initial system (1.1),(1.2). Nota- 

tion (a~'- dx'dy'dr') has been introduced for the sake of conveneience. 

Integration with respect to t’ racy be carried out either over the time 

Interval from t, preceding the time of source action, or t_ following it. 

Substituting (1.4) Into Equation (1.6), and postulating the Pulfllment 

of boundary conditions (1.3) over the body surface, we obtain the PolIowIng 

Integral equation for P(r, t) : 
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The determination of the surface for:e P Is thus reduced to the w:.L(- 
tion of integral Equation6 (1.7) wlth arguments In the form ,:f Green's trn- 
sor function which is considered as known. 

We note that in the derivation of (X-7) no assumptions sight: made a:: t.. 
the potential Character tf the Interaction between body and medium, ttiere- 
fore, Equation (1.7) makes It possible to determine the full force actInk_ 
on the medium which, In the general case, consistes of a turbulent and ,:*- i 
potential part. If, on the other hand, the sources ani: aln!c,~ Q(r, ?) a:~ 
left in the continuity Equation (1.2), and the stlpulatlon Is made that. in 
(1.1) t(*, t) - 0 , then, after appropriate ccmGutatlcns, tll~ integral t'~~ti;t- 
tion may he derived from function O(r?, t). It Is evident that. this is, irt 
fact, made on the assumption of a potential flow. It becomes: the,,ef'ore, 
necessary when considering, for example, viscous media, to Inkoduce ink 
the analysis additional sources or' turbulence. The metod of f‘-,rce s.\lwce~ 
considered here does not require such addltlonal devices, making it possible 
to detarmine In a natural nay both, the potential and the turbuient parts of 

the medium reaction foraes. To liluetrate the method of force sources we 
shall consider two simple problems. 

The first problem deals with viscous flows. We stiali :'lr&J Lhe perturbs- 
tlons which are created in a viscous Incompressible medium by ;I clrcu2ar. 
cylinder of radius u 
system (r, zt m,j, 

and Infinite length along the b-axis of the coordinate 
zotating slowiy about the axis with an angular velocity 

W iJe shall also deternine the force resist3ng the syilndet~ r*i?LaS,Icn. %+- 
f?& parameters are independent of cs , and Equation ; 1.? ! 1~5 am&:; 

(/“:‘,* 
.-.’ 1 dn i’. 

._.. _ i __, (fr” (m r &. ,I 
t 
‘I;* 

j ‘( 

Substituting the expression of f, Snto (1.5) and lntegratlng with :'e~l;ect 
to 9, and r , we come to the conclusion that the unknown constant 1 is 
the force acting on a unit of the cylinder length. 

In this simple example it is posslbie to dispense with the preliminary 
determination of the Green's function. 
to Equations (1.8) and (1.9), 

Applying the Hankel transformation 
and us@ the inversion theorem [ll], we obtain 

For the determination of T 
which gives 

we shall use boundary condition v,(a) = QQ, 

T = 4nqauo (1.11; 

This result is well known in hydrodynamics where It was derived by means 
of solving the boundary value problem of Equation (1.8) without Its right- 
hand side t 81. 

As the second example, we shall consider a problem from the domain of 
acoustics concerning the reaction force of sonic waves emitted by a plate 
vibrating harmonlcal3.y with frequency u10 and ampiltude a in the dlrectlon 
of the r-axis perpendicular to the plate. For the displacement of particles 
of an Inviscid, comprasalble medium we have from Equations (1.1) and (1.2) 
the following expression: 

The boundary condition at the plate surface Is 

(1.13) 
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In acccrtiancc b:lth (1.4) the expression of p, 1s 

fZ (2, t) = P (f) 6 (2 - a sin met) (1.14) 

i:i.er’t: tt,t unknown function i(t) 1s the pressure on the plate surface. 
Grce:i'r Functlcn for Equation (1.12) In the case of a lagging argument Is &of 

lil?rt ) i’(x) 1: the Heaviclde function [lOI, 

SUbL'_iLUtiIij- I'??atLL r~!,ip:: (1.13) tG (1.15) into the general formula (1.79, 
i;ltt!:ratlr.~ 'Witi- reSl>rCt L Z' , and dlffcrentlatlng the lntecral equation 
'V; it 1 1 P c L: Ije c t t : + ) we c~tt.a!.n 

- I, 

The s;ji.utlon of this Integral equation 1-s 

1' (t) = ponO),,r COS wOz (1 - ‘lil cos (Ool) (M = 000 / c) (1.G) 

Here X Is the Mach number. The appearance of the second harmonic In 
the expression of i.(t) 1s the result of the Doppler effect of the osclllir- 
tlng plate. 

2. Voluaa for00 l ouroo of a rln@lr form in l ocm@rrrrlblr flm. Ye shall 

c>nslder the problem of perturbations generated in a fluid compressible 

:..:.Gil LX1 by i :clume-source force of the simplest form. We shall specify the 

:: :mp;e force source of perturbations In a cyllndrlcal coordinate system In 

tne form of the fcllowlrg functions 

f(r for ; z -- V,t I-\< 1, ?<a 

f(r I z, f) = 0 in the remalnlng space 
(2.1) 

where the z-axis coincides with the direction of flow velocity Vu and l z 

is the unit vector in the same direction. The stipulation of form (2.1) for 

the force source means that the density of force ? is throughout zero, with 

the exception only of the area bounded by a circular cylinder of radius c 

and length 21 . Within the latter area the density of fcrce i Is directed 

along the z-axis and equal to the constant F/ma=2 . Using relationships 

(1.5), we conclude that the constant F Is simply the drag of the perturb- 

ation force source, which will be approximately determined later. 

The selection of form (2.1) for the force function was made not p.o much 
on physical considerations, as fo? the sake of comparative slmpllclty of 
further mathematical computations. Nevertheless, we may expec'; to derive 
certain information about the general character of an axial flow past bodies 
of rotation with dimensions a and 2L by using the results obtained I"or 
function f of form (2.1). It Is hlghli probable that a distribution close 
to that of (2.1) would be realized with an axial flow past a three-dimensid 
axlsymmetrlc cylindrical lattice body of rr+dlus a and length U , con- 
structed from slender bodies of rotation. The lattice pitch must be assumed 
to be considerably smaller than Its dimensions, and the dimensions of the 
lattice forming elements, located at nod&l points, to be smaller than the 
pitch. In this case force F will be the resultant of all forces acting 
on lndlvldual lattice elemer.ts. Expression of 
as an asymptotic approximation to 

f In (2.1) may be considered 
the actual distribution of the lattice 

forces per unit volume. 
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In a coordinate system in which the perturbation source (2.1) is assumed 

at rest, while the rned~~ moves past it with velocity V, in the negative 

direction of the t-axis, we can derive from Equations (1.1),(1.2) the follow- 

ing relationship (*) 

In order to solve Equation (2.2) with function P, defined by (2.1) we 

shall resort to a double Fourier-Rankel transformation [II] 

$-CO-+-00 

Y"(k,X) =& $ 5 rYP (r, E) eixEJy (kr) drd% 

with inversion formula 
0 -w 

v (F, E) = TykFy (k, x) e-%Ty (k, r) dk dx 
0 --co 

where J, Is a Bessel function, Y is any of the components of perturbation, 

or of f?unction $,,and -y, the transform of function Y . Applying this 

integral transformation to Equation (2.2) and relationship (2.1), and using 

the inversion formula, we finally derive the following integraf representa- 

tion of pressure perturbations: 

The value of the double integral of (2.3) depends essentially on the Mach 

number. With the use of known methods cl23 we obtain for subsonic velocities, 

when N < 1 

P(F* %) = &&ya i (-~)m{l/(%T~)a+~z(,+.)zE(q,)- 
m=O 

Here X, E and II are complete elliptical integrals of the first, second 

and third klnd respectively, with modulus q, and parameter n defined by 

‘I2 -- 
Qm = 2y [ (4 T I)* 1”;s (r + 62)s 1 ’ 

n=4ar 
o- + a)% 

(T = 1/1-M”) (2.5) 

The minus sign of binomial (5 7 I) applies to the first term of the sum 

in (2.4), and the plus sign to the second one. Prom (2.4) and (2.5) with 

r-a we obtain at the surface of the cylinder bounding the source 

l ) An analogous equation without right-hand side, derived for the velocity 
potential (the ‘Prandtl-Qlauert equation), was the subject of a detailed 
analyals in the monograph by Krasll'shchikova [2]. 



This pressure distribution Is plotted on Fig.1 In dimensionless variables 
y = 4n"U y2P/F, x = c/L for C - 2ay/A - 0.1 . 

It will be seen from this graph that for N < 1 there Is an area of 
Increased pressure upstream of the perturbr.tlon source, while at Its rear we 
have an area of low pressure. In the lower left-hand corner of'Flg.1 are 
shown experimental data obtained by Wood and Vincent for pressure dlstrlbu- 
tlon In an axial flow over bodies of rotation at subsonic velocities 1131, 
with the distance on the abscissa axis. The slmllarlty of these curves IS 

easily seen. 

With the use of asymptotic formulas for complete elliptic Integrals, with 
ISI>> 1 and rwa, we obtain from (2.4) and (2.5) the following expression 
for the pressure away from the source 

It follows from this that the pressure distribution at some distance from 
the source Is of dlpolar character. 

When X =I the Integral In Equation (2.3) Is 
ihe pressure tends to become Infinitely 

al meaning of this can bs simply 
e 
f 
Inning of sonic wave emlsslon 
161). In real media this dlver- 

gence Is eliminated by nonlinear effects, and by the 
effects of viscosity and thermal conductivity. Con- 
sequently, the linearized theory becomes Inadequate 
In certain ranges of nearsonlc velocities. 

For M > 1 the Integral In (2.3) becomes again 
convergent, but the lntegrand has 
poles which are located on the real 
axis R along which Integration 
takes place. From the linear the- 
ory of radiation we know that In 
this particular case waves are 
generated by moving sources C6 and 
91. The presence of vlscosi‘ty has 
the effect of shifting these poles 
of (2.3) Into the upper half-plane 
of complex values of x . The lm- 
proper Integral of (2.3), as well 
as the functions by which these 

0 2 4 Fig. 1 
are expressed will be discontinuous 
1121. The dlecontlnulty lines are 

Indicated on Flg.2, and bound areas 1 to 6: 

2 - % = +rl (r - a), l - % = r1 (r + a) 
-__ 

(r1= 1/M - 1). 

- 1 - % = rl (r - a), l'- % = y1 (r + a) (2.8) 

In the space x# these equalities define conical surfaces. 

Computing the Integral oiy!~~~ < 1 by the known method [12], we obtain In 
the case of parameter C - the following expressions for pres- 
sure perturbations In the above area: 

r2 - aa 
+- 

(1 - 02 
2a JG [ 

K(q2)-- T12(’ _ a)? 17 (‘lz, 122) I ; 
--_.I-- l1/(l - 5)’ - p3 = - 2n2a21yl k n2 (r - aI2 E(43) - 

P4 = P3 (r, %I - Pz cr., -%I, P5 = P3 (r, E) - P3 (TV - E) 
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If <s-l, we have 

0,' ii, p2’ /‘_ (i’. _). f’,$J :- p2 (r. 21 -- p2 (r, -~- :) 
l’.ll I’:, ii-, F) -- ,J? i f.. Z). p;’ I’.) IT: 2) .-‘- ,rr (v, -- ;) (Z.10) 

Here, the modull and parameters of the complete elliptic integrals are 
defined by the following expressions: 

z i:! ^i ! / , 
jeL -I I ii’, ._ ” 

-1’ 1 ,/ y ~._ Ti” (r py2 
‘I:: : 

,i”yI- ’ t,:, -~ - , 1,: 
‘i: y12 ir __ (1)” 

ir,, 
I t ‘4 (’ -- i/y ('.fl) 

Expressions for area 6, the trail area, where r - a can be derived In 
a similar manner. Thus, all perturbations are concentrated within a circular 
cone with the apex angle 9 = 2tg-'(y,)-'. 

Pressure distribution pfs, CL) on the surface of the cylinder containing 
sources with 6 c 1 is defined by 

1,' [ ‘> 

(II .= 0, !)A = %))iM,“il ,‘I! ,;- [‘I:: CCC (1: -.- I: (ill) j- (I .-- ‘1 2) K(g2)]/ 

/,’ 1. 
I3 “.wiri_ I_“’ -- .7 

-‘_ ,; Q;‘\j 
(2.12) 

I 1.1 ’ Pa = 1% (ir,) -- f’! (- <, 

p3 :-. I’3 (5) -- 1”:s (- E), $Jz z.z ( f - 21 / .f _r , -iI il 

Function !, = 2finly,p/F has been pLotted on Fig.3 in terms of the dimen- 
sionless coordinate x II c/1 with parameter : = 0.1 . From Equation (2.9) 
we can, on the other hand, establish the asymptotic character of perturba- 
;Fdns of pressure p 

f>>&. 
at great distances from the sources, i.e. for 151 >'e, 

Thus, for example, we have in area 5 

A diagrammatic representation of 
~~(8) In spherical coordinates r=llsin 
!: =Rcose with constant R is given 
in Flg.2. It is interesting to note 
that the asymptotic formulas (2.7) and 
(2.13) coincide with expressions 
obtained earlier 161 for pressure per- 
turbations created by a point-force 
source. 

The magnitude of force F remained 
so far undefined. We shall now derive 
an approximate expression of this force 
in terms of the source characteristic 
dimensions a and 2g , and of the 
Xach number, As the perturbation 
source is given in volume, and not at 
the surface, it Is necessary for the 
determlnatlon of F to substitute for 
the surface boundary conditions a suit- 

Fig. 2 able condition as to the character of 
perturbations in the volume of the 
source action. It is evident that the 

medium 1s being slowed down in the area of the force source action. This is 
confirmed by experiments which show that downstream of the body rear face an 
area is formed where the gas is stationary, the area of stream stagnation 
[13 and 161. In order to utilize this effect for the approximate determina- 
tion of force F , we shall proceed from the equation for the t-components 
of velocity ~(5, 7) 



Llnearimd theory of r1.m past bodlcs. Method of force sources 1207 

(2.1’1) 

We shall consider velocity perturbations at the flow axis, I.e. at r -0. 
We Integrate Equation (2.14) with respect to < within the limits of the 
area occupied by the source, and using (2.3) obtain 

We assume that the velocity drop due to the slowing down of the flow is 
v.J : 

w (19 0) --w(-l,O)s-vv, (2.16) 

With this we obtain from (2.15) the approximate expression of force F 

F = ~a2p~Vo2 / sin2(xl) JI (ka) \ dk dx 

1 

-1 

\[I+2 + (1 - iw) x2/ (2.17) 

We introduce the coefflclent of aerodynamic drag C , and tne relative 
thickness of the source a 

cc F 
If2 aa2 POVC? ’ 

a=-& (2.18) 

We compute the integral in Expression (2.17), and using notations of 
(2.18), obtain 2 

C= 
1- (1 + a fSii@ - 1/l + a2 (1 - iM2))/j1- IM'L) 

for M< 1 

2 
C=. 

if (I- 1/i - a2 (Mz - 1)) /(Me - 1) 
for CL J.OF=3~:1 

2 
(2.19) 

c =1+l/{w---1) 
for a Jfm_l1>/ 1 

Values of coefficient C computed for seve:al values of M and three 
values of Q. are tabulated below 

M=O.l 0.3 0.s 0.7 ,1.2 1.6 1.8 

C=2.103 2.108 2.120 2.147 2.000 2.(100 2.NIO (a = 0.1) 

C= 2.701 2.741 2.866 3.202 1.913 l.%t l.909 (a = 0.3) 

C = 3.248 3.364 3.689 4,749 f.772 1.754 I.740 (a = 0.5) 

The drag coefficient C rapidly Increases with increasing velocity, as 
longas MCI and slowly decreases with M > 1 . 
"the wave drag kisls". 

This effect Is called 
It Is notable that the greater the value of para- 

meter a , the earlier this effect becomes apparent. All this coincides 
qualltatlvely with experimental data on the dependence of coefficient C 
on M and Q in axial flow past bodies of rotation [143. 

Fig. 3 

The following interpretation of the 
dependence of the drag coefficient on 
the Mach number may be proposed. It is 
easily ascertained that the force source 
defined by (2.1) consists of turbulent 
and potential parts. It follows from 
Equation (1.1) that In the absence of 
viscoslt 
fled by 1 

effects, and with $, specl- 
2.11, the velocity vortex In 

the volume of the source and in Its 
trail of radius a Is not zero. It is 
clear from this that at slow subsonic 
velocities of the source, Its drag Is 
conditioned by the turbulence In Its 
trail. In the subsonic velocity range 
of compressible fluids the effective 
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drag due to turbulence appears to increase with Increasing velocity in 
accordance with (2.19). With supersonic velocities the drag coefficient 
decreases, due to the emission of conical Mach waves which dlminlshes the 
turbulence drag. 

We shall compute the emlsslon lntenslty of sound waves generated by the 
force source when M > 1 by resorting to the method used in [6] for the 
case of a point source. home simple calculations yield 

,m 

dE F2 (2.20) 

dt- npl)a212Yo(M2--- 1) s 
?!?!$! J;(nx v/M?- 1)dn 

0 

(E lse;;;g;jission 

The Integrand of (2.20) Is In essence the spectral density of sound emls- 
slon intensity expanded Into a Fourier series with respect to wave numbers. 
The frequency spectrum of emission Is obtained from (2.20) by the simple 
transformation UJ = wVo , where UI Is the frequency of the emitted sonic 
wave. 0 - 0 a divergent integral Is obtained In the case 
of a PO!:: .s",uGcz C6yd oh e convergence of this Integral In the case of an 
extended source Is conditioned by the Interference of emitted waves (see, 
for example, Cl73 . Unfortunately, 
integral of (2.20 1 

It had not been possible to express the 
by any hewn function. 

To evaluate the limit of appllcablllty of the linear approximation we 
shall assume In our case that the area of the source action Is fairly elon- 
gated, i.e. a c 1 . As a rough measure of appllcablllty of the linear appro- 
ximation we shall use the following condition: 

Pmax = I P (- 1, 0) I < PO (2.21) 

where p. Is the pressure In the undisturbed flow. Computing p(- 1, 0) 
with the aid of Formula (2.3) and substituting this into (2.21), we obtain 

M<iM,= 1/i-cc2 for M<i, M2a2 < 1 ‘for M> 1 (2.22) 

These two criteria are hewn from the linearized theory of flow past 
bodies rl3l. Thus the linear aooroxlmatlon can onls reveal the tendency of - __ 
the drag coefficient to grow ~1% N 
In the domain of N,< H i 1 

approaching the critical value M+ . 
the linearized theory becomes Inadequate, and 

It Is necessary to take Into account nonlinear effects, and the transport 
effects of viscosity and thermal conductivity. 

It Is hoped that the method of force sources proposed here may be found 
useful for the derivation of both rigorous and approximate solutions of 
problems concerning the Interaction between rigid bodies and fluid media. 
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